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Presenilins (PS1 and PS2) exhibit similar y-secretase-dependent and —independent functions with subtle var-
iations. In this study, we established a cost-effective process to overexpress and purify full-length human PS2 in
sufficient quantities and quality for structural studies. Upon optimization, milligram quantities of homogeneous
trimeric hisPS2 were purified, which enabled the preliminary characterization of human hisPS2 zymogen. Far-
UV and near-UV CD as well as fluorescence spectroscopy revealed that purified hisPS2 contained the expected
secondary structure and was folded into a defined tertiary structure. Thermal stability analysis revealed a Tp,

value of ~55 °C for secondary structure while cholesterol significantly increased the stability. The low melting
temperature of ~34 °C for the tertiary structure was able to explain the purity and aggregation problems ob-
served during purification. Additionally, the occurrence of calcium ions induced structural changes to different
extents for PS2WT and PS2-D263A/D366A was observed, which is consistent with previous studies.

1. Introduction

Full-length presenilin zymogens (PS1 and PS2) are short-lived
multi-transmembrane proteins found in the endoplasmic reticulum (ER)
[1]. During ER-to-Golgi recycling [2], PS zymogens are activated by
autocleavage into stable N- and C-terminal fragments that associate
with three other components - nicastrin, Aphl, and Pen-2-to form the
y-secretase complex [3,4]. In contrast to endogenous PS1, PS2 was
mainly found as the full-length protein in human and mouse brains
[5,6]. During embryonic development [7], neuron maturation [6], and
aging [8], PS1 expression was either constant or decreased while PS2
expression increased, thus indicating their distinct regulatory functions.

Due to the existence of two PSs and — in humans - two APH1 iso-
forms, at least four complexes co-exist in the cell [9,10], which process
distinct substrates depending on their subcellular localization [9]. The
PS1-containing complexes reside predominantly at the recycling en-
dosomes and the plasma membrane [11,12], while PS2-containing
complexes are restricted to late endosomes and lysosomes [13]. PSs
exhibit similar but subtly distinctive biological functions in y-secretase-
dependent and -independent pathways [14].

The most widely studied y-secretase substrates are Notch and C-

terminal fragments of B-amyloid precursor protein (APP-CTFs). The
cleavage of Notch by y-secretase releases the intracellular domain to the
nucleus, which in turn affects the development of cells and cancer [15].
The cleavage of APP-C99 by y-secretase generates amyloid-beta pep-
tides (A) of varying lengths, among which the longer peptides — par-
ticularly AB42 and Ap43-are aggregation-prone and are the initial and
key components of A plaques [16], a hallmark of Alzheimer's disease
(AD). According to the amyloid hypothesis of AD, mutations in APP or
PSs induce the relatively elevated production of AP42 peptides. The
abnormal deposition of AB42 was proposed to trigger the AD patho-
genesis [17,18]. Of all the PS-related AD pathogenic mutations, about
150 are found in PS1 and about 13 in PS2 [19]. PS1-containing y-se-
cretase was reported to produce more AP than PS2-containing y-se-
cretase [20] and is responsible for the production of the majority of CNS
AR [21]. However, familial AD (FAD) mutations in PS2 increase the
production of intracellular toxic AB42 in late endosomes and lyso-
somes. Some FAD-PS1 mutations lead to a change in the subcellular
location of y-secretase and phenocopy the FAD-PS2 mutations [13]. The
amyloid hypothesis is challenged by the heterogeneous clinical phe-
notypes of PS mutations and is yet to be experimentally proven
[22-24]. The presenilin hypothesis of AD proposes that the loss of
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essential functions of PSs alone might be a more potent cause of AD-
related phenotypes than the accumulation of toxic A} peptides [25,26].
It is still debated as to whether PS mutations induce AD through gaining
a toxic function of y-secretase or through the loss of an essential func-
tion of PSs.

PSs are also proposed to be involved in many other biological pro-
cesses independent of y-secretase, including the modulation of in-
tracellular calcium homeostasis although the exact site(s) and me-
chanism of this function requires further investigation. It was suggested
that PS holoproteins form ER channels [27,28], but contradicting re-
sults have been reported [29-31]. This calcium leakage function is in-
dependent of y-secretase activity: PS1-D257A, which lacks proteolytic
activity and therefore remained uncleaved, still exhibited the channel
function [28]. PSs physically interact with ER calcium channels (e.g.
InsP3R [29,32] and RyR [33,34]) and up-regulate calcium release.
Furthermore, PSs affect the calcium influx by interacting with the ER
SERCA pump [35,36]. For PS2, it is only the full length protein and not
the cleaved fragments that exhibits depleting effects on the intracellular
calcium stores [36]. The preferential interaction of PS2 with calcium
binding proteins (e.g. calmyrin [37], p-calpain [38], and sorcin [39])
were also observed. PS2-but not PS1-was also reported to modulate
ER-mitochondria tethering and calcium cross-talk between these two
organelles [40,41]. PSs are also essential in regulating mitochondrial
calcium homeostasis [42]. Moreover, PSs also alter lysosomal calcium
release/storage [43,44]. Many familial AD mutations in PSs cause dis-
turbed calcium signaling, which may indicate an important role for
abnormal calcium signaling in AD pathogenesis [45-47].

Among the PS-related structural information reported were the
crystal structure of the presenilin archaeal bacterial homolog (PSH)
[48] and the nuclear magnetic resonance (NMR) structures of the C-
terminal domains of PS1 (PS1-CTD) [49] and the cryo-electron micro-
scopy (cryo-EM) structures of PSl-containing y-secretase [50-52].
These analyses are all based on activated PS1. The low expression level
and poor solution behavior of full-length eukaryotic PSs [48] directed
research towards bacterial homologues. Structural information on the
PS2 zymogen alone may help to elucidate the different physiological
and pathological functions of PS1 and PS2, and might also shed light on
the auto-inhibition and activation mechanisms for both the proteolytic
activity of y-secretase and the suggested passive calcium leakage
channel.

The present study reports on the detailed process for large-scale
expression, purification, and preliminary structural characterization of
human PS2 by CD spectroscopy. This expression and purification ap-
proach allows milligram quantities of well-folded, homogeneous full-
length PS2 zymogens to be obtained for further structural analysis.

2. Materials and methods
2.1. Materials

The E. coli strain BL21-CodonPlus (DE3)-RP was obtained from
Agilent Technologies (Hamburg, Germany), BL21 Star™ (DE3) from
Invitrogen (Darmstadt, Germany), C41(DE3) and C43(DE3) from
Lucigen (Heidelberg, Germany), detergents and cholesterol from
Anatrace (Maumee, USA) and Glycon (Luckenwalde, Germany), Ni-
NTA resin from Qiagen (Hilden, Germany), and the EDTA-free protease
inhibitor cocktail from Roche (Basel, Switzerland). Furthermore, the
Hiload 16/60 Superdex 200 pg column was obtained from GE
Healthcare (Freiburg, Germany). All other reagents were purchased
from either Sigma-Aldrich or Merck.

2.2. Plasmids construction
A codon usage-optimized human PS2 gene was synthesized by

GENART (Regensburg, Germany) and cloned into the pQE2 vector
(Qiagen, Hilden, Germany) with an N-terminal hexa-histidine (hisPS2).

64

Process Biochemistry 64 (2018) 63-73

PS2 active site mutations (hisPS2-D263A/D366A) were performed
using the QuikChange Site-Directed Mutagenesis Kit (Agilent
Technologies, Hamburg, Germany). The correctness of resulting plas-
mids was confirmed by sequencing.

Initially, the possibility of expressing and purifying the entire PS2 in
E.coli was evaluated using a PS2 construct with N-terminal hexa-histi-
dine and a C-terminal strep tag (hisPS2strep), which allowed protein
integrity to be monitored by western blot.

2.3. Expression and membrane preparation

An overnight pre-culture (supplemented with 50 pg/ml kanamycin
and 2% (w/v) glucose) was diluted into 300 ml Terrific Broth (TB) or
Double Yeast Tryptone (DYT) media in a 21 flask to an ODggg of ~ 0.2
and grown at 30 °C to an ODggp of ~ 0.8 for induction with 0.2 mM
IPTG. Cells were then grown at 18 °C for 16 h before being pelleted. The
removal of the periplasmic fraction was performed after harvesting
[53].

The obtained pellet was resuspended with 10 ml ice-cold lysis buffer
(20 mM Tris'HCl; pH 8.0; 10% (v/v) Glycerol; Protease inhibitor 1 ta-
blet/50 ml buffer; 1 mM PMSF; 1 mg/ml Lysozyme; DNAse 5 mg/50 g
cell pellet; 1 mM TCEP) per gram pellet and incubated at 4 °C for 1 h
under gentle stirring. The cell suspension was passed through a cell
disruptor (EmulsiFlexC3, Avestin, Mannheim, Germany) five times at a
pressure of ~ 20, 000 psi. After lysis, EDTA (10 mM) and NaCl
(300 mM) were added to the lysate. This suspension was subjected to
three steps of sequential centrifugations at 4 °C: 900g (15 min), 10,
000 X g (30 min), and 100, 000 x g (1 h). The pellet fraction from the
second (inclusion body fraction) and third centrifugation step (mem-
brane fraction) were analyzed by western blot.

2.4. Solubilization screening

Membrane from 0.1 g cell pellet was suspended in 0.5 ml solubili-
zation buffer (20 mM TrisHCl, pH 8.0; 10% (v/v) Glycerol; 300 mM
NaCl; 1 mM PMSF; Protease inhibitor 1 tablet/50 ml buffer; 1 mM
TCEP; 1-2% (w/v) detergent). The detergents used in the study are
indicated in Table 1 in Ref. [54]. After solubilization, the supernatant
and pellet were separated by centrifugation at 100,000g for 1 h and
analyzed by western blot.

2.5. Ni-NTA purification

Membrane from 20 g cell was solubilized in 100 ml solubilization
buffer (1% (w/v) Fos-choline-14 (FC14)). After centrifugation, imida-
zole was added to the supernatant to 15 mM. This solution was loaded
onto a 5ml pre-equilibrated Ni-NTA column. The flow-through was
collected and reapplied to the column twice. Five column volumes (CV)
of the solubilization buffer supplemented with 15 mM imidazole (wash
1) were then passed through the column. After this step, the detergent
concentration was decreased to 0.014% (w/v) FC14. Other components
of the buffer were kept constant except for changes in salt and imida-
zole concentrations: wash 2 (500 mM NaCl, 5 CV), wash 3 (1 M NaCl, 5
CV), wash 4 (20 mM imidazole), and wash 5 (25 mM imidazole) were
carried out sequentially. Elution of the bound protein was achieved by
the buffer being supplemented with 300 mM imidazole. For solubili-
zation and purification of hisPS2 in mixed micelles of FC14 and cho-
lesterol, cholesteryl hemisuccinate tris salt (CHS) was added to the
corresponding buffers (CHS: FC14 = 1:10 (w/w)).

2.6. Mass spectroscopy (MS)

Bands of interest were cut from SDS-PAGE, destained, dehydrated,
and digested as described in the Trypsin Profile IGD Kit (Sigma-Aldrich,
Hamburg, Germany). 0.1% TFA was added to the extraction for acid-
ification prior to matrix addition. The digested peptides were then
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analyzed by matrix-assisted laser desorption/ionization time-of-flight
(MALDITOF) and MS/MS using a Bruker Daltonics Ultraflex III TOF/
TOF mass spectrometer (Bruker Daltonics, Billerica, USA). Baseline
correction and mass peak detection were performed using the software
flex Analysis Version 3.0 (Build 92, Bruker Daltonics, Billerica, USA).
Finally, both the MS and tandem MS data were searched against Swiss-
Prot protein databases for protein identification.

2.7. Size exclusion chromatography (SEC)

2ml of concentrated protein sample (30 KDa Millipore con-
centrator, Millipore, Darmstadt, Germany) was filtrated (0.2 uM cen-
trifugation filter, Nanosep’, Dreieich, Germany) and subjected to SEC
on a superdex 200 pg column calibrated by a SEC calibration kit
(Sigma-Aldrich, Hamburg, Germany). The flow rate used was 0.3 ml/
min. Detergent micelles were visualized by staining FC14 micelles by
rhodamine B (Avanti Polar Lipids, Hamburg, Germany) at a monomer
mole ratio of ~20:1. The apparent molecular weight and radius of the
eluted protein-detergent complex were obtained from the calibration
curve.

2.8. Circular dichroism (CD) and fluorescence spectroscopy

The CD and fluorescence spectra were recorded using an Aviv 425
circular dichroism spectrometer (Aviv Biomedical, Lakewood, USA)
equipped with fluorescence emission scanning monochromator which
enables the simultaneous collection of CD and fluorescence data.
Purified hisPS2 was buffer exchanged by a PD-10 desalting column (GE
Healthcare, Freiburg, Germany) into CD buffer (10 mM sodium phos-
phate, pH 7.4, 0.014% (w/v) FC14) for data collection. For far-UV CD,
spectra between 260 nm and 185 nm were collected with 1 nm step
size, 1 nm bandwidth, and 9 s averaging time in 0.1 cm path length
Suprasil cuvettes. For near-UV CD, data from 350 nm to 250 nm were
obtained with 0.25 nm step size, 1 nm bandwidth, and 30 s averaging
time in 1 cm path length cuvettes. Baselines were measured from buffer
solutions under the same experimental conditions. Baseline subtraction
and spectra smoothing were carried out using the Aviv CDS software.
All spectra were recorded in triplicate and collected at 4 °C except the
thermal unfolding experiments. The protein concentrations used for far-
and near-UV CD were ~ 3.3 uM and ~ 20.8 uM, respectively. Protein
concentrations were determined from the absorbance at 280 nm using
the calculated extinction coefficient 76780 M~ cm™' obtained by
ExPASy ProtParam [55]. The baseline-subtracted spectra were scaled to
obtain the mean residue ellipticy (MRE) using a mean residue weight of
112.54 Da. The CDSSTR algorithm and the reference data sets 4, 7, and
SMP 180 were used for the deconvolution of spectra [56,57].

During thermal unfolding, the temperature was raised in 2 °C steps
with at a heating rate of 0.5 °C/min and 1 min equilibration time before
data collection. For far-UV CD, the signal at 221 nm was collected with
an averaging time of 9 s between 4 °C and 98 °C. A temperature reverse
scan was carried out in order to investigate the reversibility. For near-
UV CD, the 292 nm signals were recorded with an averaging time of
30 s from 4 °C to 80 °C. The measured signals were corrected for buffer
contribution and fitted with a Boltzmann sigmoidal equation (Origin
9.0) to obtain the melting temperature (Ty,).

The fluorescence emission spectra (450 nm to 270 nm) were re-
corded at different excitation wavelengths with a bandwidth of 2 nm, a
photomultiplier tube (PMT) voltage of 900, an averaging time of 1s,
and an emission slit setting of 2 mm.

3. Results
3.1. Overexpression of hisPS2

Heterologous overexpression of human membrane proteins often
result in cell death, protein misfolding, and aggregation due to the
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DYT+ C43 0.81 4.45 1.01
DYT+ C41 0.83 4.63 1.09
DYT+STAR 0.83 0.22 nd
DYT+ RP 0.63 0.21 n.d
TB+ C43 0.76 6.02 1.49
TB+ C41 0.78 4.88 1.25
TB+ STAR 0.63 0.99 n.d
TB+ RP 0.62 4.23 0.93
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Fig. 1. Expression screening of hisPS2 in different cells and media.

(a) Expression screening was performed in 100 ml DYT or TB media with four different
strains (see Section 2.1). The OD600 at induction and after 16 h expression as well as the
wet cell pellet weight are listed. Experiments with OD600 lower than 1 were not analyzed
(n.d. = not determined). (b) Western blot analysis of expression. U: uninduced control; I:
inclusion body fraction; M: membrane fraction. 10 pg total protein was loaded in each

lane for comparison. N-terminal his-tag was investigated by monoclonal anti-poly-
histidine-HRP antibody (Sigma-Aldrich, Hamburg, Germany). The black arrow points to
the monomeric form of hisPS2.

saturation of the host sorting and translocation system and cell mem-
branes [58,59]. We therefore applied codon usage-optimized DNA and
screened four different strains in DYT and TB media for their ability to
overexpress human PS2.

As listed in Fig. 1a, hisPS2 exhibited toxicity to STAR and RP strains,
resulting in cell death (OD600 lower than induction) after 16 h ex-
pression when the DYT medium was used — but not for the TB medium.
This is probably due to the acidic stress upon overexpression [59]. For
the DYT medium, an acidic pH was observed upon cell harvesting.
Regardless of the medium used, C41 and C43 strains yielded relatively
higher cell densities than the other two strains. These strains contain
mutations in the lacUV5 promoter which slows down the speed of
protein translation [60]. Meanwhile, a lower temperature (18 °C) after
induction was used to further slow down the protein expression rate,
which allows the translation system to optimally adapt to induction
stress [61]. It was revealed by means of Western blot (Fig. 1b) on the N-
terminal his-tag that most protein was present in the inclusion body
fraction when the DYT medium was used. For the TB medium, an equal
distribution of the protein between the inclusion bodies and the
membrane fraction was found. In order to obtain the correctly folded
protein, only the isolated membrane fraction was used for extraction of
hisPS2. Large-scale overexpression of hisPS2 was achieved in the C43
(DE3) strain with the TB medium. This combination yielded the highest
cell density and cell pellet weight. Typically, after 16 h of expression,
an OD 600 of 8.3 = 0.3 and a cell pellet wet weight of 12.9 + 0.3 g/L
was obtained.

3.2. Fos-choline detergents are most efficient in solubilizing hisPS2

After overexpression, we investigated the ability of 13 detergents
with different soluble groups, charge, and chain length to solubilize
hisPS2 (Table 1 in Ref [54]). After detergent extraction (Fig. 2a), clear,
transparent residual pellets were observed for FC12, FC14, FC16, and
NLS. The other detergents exhibited pellets that were brown in color.
Western blots (Fig. 2b) revealed that the signal in the supernatant (SN)
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after centrifugation was comparable to the total signal found for the
suspension (S) before centrifugation for FC12, FC14, FC16, and NLS. No
protein signal was detected in the pellets for these four solubilizers.
Other detergents investigated solubilized hisPS2 either poorly or not at
all. It was generally observed that the less brown the color of the pellet
after detergent extraction, the more efficient the solubilization was. The
common denominator for complete solubilization was detergents with
an aliphatic chain length of at least 12 carbons and the presence of
negative charge at the head group.

3.3. Purification of hisPS2 from membrane fraction by Ni-NTA and SEC

The small-scale purification of hisPS2 by Ni-NTA or a combination
of Ni-NTA and Strep-Tactin purification for hisPS2strep was performed
in the presence of different detergents (data not shown). It was ob-
served that Ni-NTA binds hisPS2 more tightly than Strep-Tactin. Ni-
NTA resin was therefore used for the capturing step of purification.
FC14 was chosen as the purification detergent. Different amounts of
FC14 micelles and Ni-NTA matrix were used with a constant amount of
cell pellets to investigate the best yield and purity (data not shown).
5 ml 1% (w/v) FC14 and 0.25 ml Ni-NTA matrix per gram of cell pellet
gave the best result. SDS-PAGE exhibited two dominant bands of PS2
and impurities in the elution fractions (Fig. 3a). The two dominant
bands were found to contain PS2 by MS based on five identified pep-
tides (Fig. 1 in Ref [54]) with 14% sequence coverage (Fig. 3b). All the
peptides detected belong to extra-membrane segments (Fig. 2 in Ref
[54]), which is similar to the MS result reported for PS1 [62]. The low
sequence coverage in MS is probably a result of the inaccessibility of the
cleavage sites due to bound detergent. Despite repeated attempts to
improve the sequence coverage, only a segment of TM7 was detected
(data not shown). ImageJ was used to quantify the intensities of the
Coomassie-stained bands. The purity after Ni-NTA was calculated
at ~ 81% (Fig. 3a).

After Ni-NTA chromatography, minor impurities and aggregated
hisPS2 were removed by SEC. HisPS2 was distributed into two major
peaks with a shoulder on the left side of the first peak (Fig. 4a). The
pooled fraction of the first peak not only contained hisPS2 but also an
E.coli protein of ~75kDa, as detected by SDS-PAGE (Fig. 4a, inset,
lanel). The purity of the pooled fractions from the second peak was
estimated at ~ 95% via ImageJ by quantifying the intensity of blue-
silver-stained bands (Fig. 4a, inset, lane2). Fractions from the second
peak were collected and again subjected to SEC. The Gaussian-shaped
peak indicated a monodispersed protein detergent complex (Fig. 4b) at
an elution volume of 67.9 ml, which corresponded to a radius of 5.3 nm
(Fig. 4c). This radius indicated the insertion of protein into the de-
tergent micelles. The elution volume of rhodamine B-stained empty
FC14 micelles at 79.9 ml corresponded to a radius of 3.7 nm (Fig. 4c),
whereas FC14 micelles were reported as having a hydrodynamic radius
of 3.2 nm [63]. The value found here is in agreement with the reported
value considering the differences in methods, conditions, and the

FC16 CHAPS CHAPSO CTAB
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Fig. 2. Effect of detergents on solubilization of
hisPS2.

Membrane suspensions corresponding to identical
amounts of cell pellets were solubilized with dif-
ferent detergents (see Section 2.4). Residual mem-
brane pellets after detergent extraction (a) and wes-
tern blot analysis of detergent screening (b) are
shown. Each lane was loaded with an amount cor-
responding to 3.4 mg of cell pellet. S: suspension
before 100,000 x g; SN: supernatant after
100,000 x g; P: pellet after 100,000 x g. The full
name of detergents are listed in Table 1 in Ref [54].
N-terminal his-tag was investigated by monoclonal
anti-polyhistidine-HRP  antibody (Sigma-Aldrich,
- Hamburg, Germany). The black arrow points to the

monomeric form of hisPS2.
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Fig. 3. Ni-NTA purification and identification by mass spectrometry.

(a) SDS-PAGE (12%, Coomassie staining) analysis of Ni-NTA purification fractions. SMF:
solubilized membrane fraction; FT: flow through; W: wash; E: elution; M: BenchMark
Protein Ladder (Invitrogen, Darmstadt, Germany). The numbers on the right side of the
bands indicate the protein bands which were excised and subjected to mass spectrometry
(see Section 2.6). (b) Mass spectrometry of purified hisPS2. The MS data were searched
against the Swiss-Prot database for identification. The excised bands were identified as
human PS2 with 14% sequence coverage.

staining of micelles. By correcting the apparent molecular weight of the
hisPS2-FC14 complex (185.3 kDa, Fig. 4d) for the empty FC14 micelles
(47 kDa, Anatrace), hisPS2 was calculated to form trimers in FC14
micelles. Therefore, from 11 culture, 1.05 * 0.12 mg homogeneous
trimeric hisPS2 was obtained by a combination of Ni-NTA and SEC
(Fig. 4e).

Before delipidation of the solubilized membrane proteins by the
washing steps during Ni-NTA chromatography, the detection of hisPS2
was poor in western blots. It was thus not possible to establish reliable
estimates of the expression level. We therefore used a relative recovery
that linked yields of hisPS2 under native purification conditions to
yields from the same procedure, but using denaturing conditions
throughout (6 M urea, 1% NLS). A relative recovery of 90% was cal-
culated for the ratio between the yields from native and denaturing
purification under the final protocol.

On 12% SDS-PAGE (Fig. 3a), hisPS2 exhibited an apparent Mw of
~50 kDa and ~ 145 kDa for the oligomer band, whereas on 10%, SDS-
PAGE (Fig. 4a, inset), the higher Mw band appeared reproducibly at
~100 kDa. This type of Mw shift for helical membrane proteins de-
pendent on the acrylamide concentration has been previously studied
and reported [64]. At ~50 kDa, two diffuse bands were observed on
10% SDS-PAGE (Fig. 4a), but not on 12%. The three bands in Fig. 4b
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(a) (b) Fig. 4. SEC purifications of hisPS2 after Ni-NTA.
‘ ; : . ; (a) Ni-NTA elution was concentrated and subjected to SEC. Inset: 10%
——PS2 0D 280 nm ——PS2 OD 280 nm SDS-PAGE analysis of SEC fractions (blue-silver staining). Lane 1:
300{ — PS2 OD 260 nm i 225'_:?;40302230""‘ ] hisPS2 from first peak; lane 2: hisPS2 from second peak; lane 3:
= nm BenchMark Protein Ladder. (b) The right half of the second main peak
. . : :;g:: 83 ggg :"m1 from (a) was pooled and again subjected to SEC. The SEC profile of
2 12 3 2 1 2 rhodamine B-stained empty FC14 micelles (green, magenta, and blue
g 225 | ‘é curves) was overlaid. Inset: 10% SDS-PAGE analysis of purified
;’ = - & 100kD ;‘ 150- S8 = | hisPS2; lane 1: purified hisPS2 from main peak; lane 2: BenchMark
g Ei‘ a g (= E-100 kDa Protein Ladder. (c) Radius determination by calibration curve for
g - ---70 kDa g ~ =70 kDa dependence of partition coefficient (K,,) from log of radii of protein
"o" 150 - & { 50 kD '6 . : -50kDa standards. (d) Molecular weight determination by calibration curve of
3 " Lad 4 g ' Kav against log of molecular weight from protein standards. (e)
< ’ < Purification table for optimized purification protocol of hisPS2 from
75+ - b 20 g cell (~1.51 culture). ® Protein purity was determined by densi-
751 — B tometric analysis of SDS-PAGE bands;  protein concentration was
determined by Bradford assay; © protein concentration was de-
termined from the absorbance at 280 nm using the calculated ex-
tinction coefficient; ¢ values refer to hisPS2 trimer pool that appears as
0+ . - T 0 . = monomer and dimer on 10% SDS-PAGE (Fig. 4a, b); n.d., not de-
30 60 90 120 30 60 920 120 termined.
Elution volume (ml) Elution volume (ml)
(c) (d)
0.75 T T T 0.75 T T T T T
262 o
0.50 FCi4 micelle ] 0.50- FC14 micelle -
3.7 69.9 kDa
3 >
4 (T
PS2in FC14 x PS2in FC14
5.3£0.02 nm 185.3+1.8 kDa
0.25 . 0.25+ i
y=1.0916 - 1.0512x 87 y =1.2332 - 0.3993x «®
pugilic= DR ; 0.00 s s
0.4 0.6 0.8 1.0 1.2 15 18 21 24 27 3.0
Lg (R) log(MW)

(e)

Volume Concentration Total Protein Purity?

Step (mi) (mg/ml) (mg) (%)
Solubilized 100 6.76P 676 n.d.
membrane

Ni-NTA 25 0.19° 47 81
First SEC? 14 0.13¢ 1.8 95
Second SECH 16 0.10° 1.6 96

show different states of the SDS complex of the protein. The appearance
of two monomer bands is a typical SDS artifact for membrane proteins
when samples are only heated to 46 °C in order to avoid the formation
of SDS insoluble aggregates. They are thought to be caused by varia-
tions of SDS binding due to the different degrees of denaturation [65].
The appearance of higher molecular weight bands is also regularly
observed for membrane proteins under the above-mentioned condi-
tions. For the hisPS2strep construct — which also showed C-terminal
completeness on western blots — and the hisPS2 construct, the same
behavior on PAGE was observed (Fig. S2).
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3.4. Purified hisPS2 is well-folded in FC14 micelles

In order to investigate the secondary structure of purified hisPS2,
the protein was subjected to far-UV CD. As shown in Fig. 6a, the CD
spectrum at 4 °C displayed one positive peak with a maximum at
~192nm and two negative peaks with minima at ~209 nm and
~221 nm, which are characteristic for a-helical structures. The spec-
trum of hisPS2 in the SEC buffer exhibited a similar shape and intensity
to the spectrum in the CD buffer above 200 nm. Deconvolution revealed
that purified hisPS2 zymogen contained 51.0 = 1.0% helix and
10.7 = 0.6% beta-strand, which is in agreement with the secondary
structure content predicted by RaptorX (Table 1). The addition of
cholesterol does not influence the shape of the CD spectrum or the
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Table 1
Secondary structure content of hisPS2.

Process Biochemistry 64 (2018) 63-73

4°C 98°C Back to 4 °C 4°C + CHS RaptorX
Helix (%) 51.0 + 1.0 22.0 * 3.0 28.0 * 4.6 51.0 + 2.6 50
Strand (%) 10.7 + 0.6 29.3 + 3.5 27.7 + 4.6 9.7 + 1.2 8
Turns (%) 13.7 + 1.5 18.3 + 6.4 16.3 + 5.5 14.0 = 1.0 -
Unordered (%) 25.3 *n3.2 30.3 * 3.5 28.0 * 5.0 26.0 + 3.5 -
NRMSD (*E2) 1.2 + 0.3 2.1 + 0.6 1.3 = 0.2 1.6 + 0.2 -

The values represent the mean *

standard deviation from the deconvolution results with reference data sets 4, 7, and SMP 180. NRMSD (normalized root-mean-square deviation)

indicates the best fit between the calculated and experimental CD spectra. The secondary structure prediction was performed by RaptorX [89] based on the PS1 structure from cryo-EM

(5fn2:B).

secondary structure content (Table 1). After validating the presence of
the expected helical content, the tertiary structure was investigated by
means of near-UV CD. The near-UV CD spectrum at 4 °C showed two
positive defined peaks for phenylalanine centered at 259 nm and
265 nm, respectively. The strong positive peak centered at 292 nm is
due to tryptophan absorption. Smaller positive peaks between 270 nm
and 282 nm represented the tyrosine absorption (Fig. 7a). The presence
of the near-UV CD signal indicated that the secondary structure of
purified hisPS2 was folded into a well-defined tertiary structure [66].
Fluorescence emission spectra were recorded to investigate the
microenvironment of the aromatic amino acids of hisPS2. As shown in
Fig. 5a, the fluorescence spectra with different excitation wavelengths
displayed varied intensities with distinctive emission maxima. For ex-
citation wavelengths lower than 285 nm, both tyrosine and tryptophan
were excited, while for excitation wavelengths higher than 290 nm,
only tryptophan was excited and therefore the intensity was somewhat
lower. The fluorescence emission maximum was centered at ~ 326 nm
for excitation wavelengths lower than 285 nm. However, for excitation
above 290 nm, the fluorescence emission maximum shifted to
~333 nm (Fig. 5b), which corresponded to tryptophan fluorescence.

3.5. Thermal stability of the secondary and tertiary structure of hisPS2

The thermal stability of the hisPS2 structure was investigated by
investigating the structural stability by means of CD-spectroscopy,
which is much more sensitive to structural changes than UV/Vis ab-
sorption spectroscopy (Fig. 6a, d). Upon heating the secondary and
tertiary structure changes can be monitored by CD in the far-UV and the
near-UV range, respectively. Unlike the far-UV CD spectrum at 4 °C, the
98 °C spectra displayed a peak minimum at 217 nm, which is char-
acteristic for beta-strand-rich structures (Fig. 6a). The 209:217 nm peak
ratio decreased from 1.11 at 4 °C to 0.83 at 98 °C, indicating a loss of
helical structure and a gain in beta-strand structure. The 209:217 nm

peak ratio from the spectrum after cooling back to 4 °C was 0.90. The
presence of an isodichroic point at 200 nm indicated that thermal un-
folding is a two-state process. Deconvolution of these spectra showed
that the helical content decreased from 51% at 4 °C to 22% at 98 °C,
while the beta-strand content increased from 10% to 29% (Table 1).
The helical content after cooling back to 4 °C increased only slightly to
28%. Accordingly, a decrease in helical segments or average helix
length was accompanied by an increase in strand segments or average
strand length (Table 2 in Ref [54]).

The temperature reverse scan revealed that the CD signal at 221 nm
did not return to the initial value of the signal at 4 °C when cooling back
from 98 °C to 4 °C (Fig. 6b). Fitting the CD signals at 221 nm into a two-
state transition revealed T,, values of 53.7, 55.2, and 52.9 °C, respec-
tively, for hisPS2 in CD buffer, SEC buffer, and SEC buffer supple-
mented with CaCl,. It is interesting to note that although hisPS2
adopted a similar secondary structure in the absence and presence of
CHS, FC14-CHS-purified hisPS2 exhibited a Ty, value more than 10 °C
higher than with FC14 micelle alone (Fig. 6¢).

The reliability of the deconvolution depends on the sample con-
centration. The absorption spectrum (Fig. 6d) before and after thermal
unfolding exhibited no significant difference, thus indicating that there
was no loss of sample during thermal unfolding due to the precipitation
of aggregated protein. Therefore, far-UV CD spectra were deconvoluted
reliably to high temperatures. Interestingly, the formation of soluble
SDS-resistant oligomers was observed. SDS-PAGE analysis (Fig. 6d,
inset) showed that after thermal unfolding, hisPS2 formed SDS-resistant
aggregates that did not enter the separation gel. This kind of thermal
unfolding-induced aggregation has also been reported for other mem-
brane proteins [67,68].

The tertiary structure stability was investigated by means of near-
UV CD spectra. Spectra showed a progressive loss of the CD signal for
temperatures from 4 °C to 80 °C (Fig. 7a). The change of the CD signal
at 292 nm agreed with a two-state transition model for unfolding with a

Fig. 5. Intrinsic fluorescence spectra of hisPS2.
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cence is not fully quenched by tryptophan fluorescence, which is in
agreement with the expected folding of PSs.
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3.6. Calcium induces structural change for hisPS2-WT
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Fig. 6. Thermal stability of the secondary structure of hisPS2.

(a) Overlay of hisPS2 far-UV CD spectra at different temperatures and
under different buffer conditions. (b) Thermal unfolding and refolding
of hisPS2 in CD buffer monitored by far-UV CD signal at 221 nm as a
function of temperature. (¢) Thermal unfolding of hisPS2 under dif-
ferent buffer conditions. Solid lines represent the Boltzmann fits. (d)
Absorption spectrum before and after thermal unfolding. Inset: 12%
SDS-PAGE of the sample before (lane 2) and after thermal unfolding
(lane 3); lane 1: prestained protein marker (Jena Bioscience, Jena,
Germany).

function which is independent of y-secretase activity [28,69,70]. We

therefore investigated the effect of calcium on the secondary structure
and local differences of hisPS2-WT and hisPS2-D263A/D366A by far-
UV CD and intrinsic fluorescence.

As shown in Fig. 8a and b, hisPS2-WT and hisPS2-D263A/D366A
exhibited similar far-UV CD spectra. In the presence of calcium, a slight

It was proposed that PSs form passive calcium leakage channels, a
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Fig. 7. Thermal stability of the tertiary structure of hisPS2.

(a) Near-UV CD spectra of hisPS2 at 4 °C, 32°C, 36 °C, and 80 °C.
HisPS2 in SEC buffer was unfolded at an increasing temperature.
Near-UV CD spectra recorded at different temperatures demonstrated
a progressive loss of tertiary structure. (b) Thermal unfolding of
hisPS2 tertiary structure monitored by CD signal at 292 nm. Solid line
represents the Boltzmann fit.
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Fig. 8. Effect of calcium ions on the secondary structure and fluor-
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decrease of the “w” shape intensity was detected for both hisPS2-WT
and hisPS2-D263A/D366A compared to the corresponding spectra
without calcium. Deconvolution (Fig. 8c) revealed that in the presence
of calcium, the helical content decreased from 46.7% to 43.3% while
the beta-strand content increased from 12.0% to 14.3% for hisPS2-WT.
HisPS2-D263A/D366A adopted similar structural changes.

Although hisPS2-D263A/D366A also displayed a secondary struc-
ture change in the presence of calcium, the microenvironment of
tryptophan residues was evidently different from the wild type. As
shown in Fig. 8d and e, hisPS2-D263A/D366A exhibited 10.8% lower
fluorescence intensity than hisPS2-WT. In the presence of calcium, the

70

450

Wavelength (nm)

fluorescence was quenched by 11.1% for hisPS2-WT but only 4.2% for
hisPS2-D263A/D366A, which demonstrated the different effects of
calcium on these proteins.

4. Discussion

Structural investigations of PSs have been mainly focused on
cleaved PS1 as the proteolytic subunit of y-secretase. The investigation
of isolated PSs had been limited to the crystal structure of a bacterial
homolog and the NMR structure of the PS1 C-terminal fragment due to
the low expression level and poor solution behavior of full-length
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eukaryotic PSs [48]. The structures of cleaved PS1 were unable to ex-
plain the auto-inhibitory and activation mechanism of the PS zymo-
gens, as most of the cytoplasmic loops containing the hydrophobic in-
hibitory segment and the auto-cleavage sites were not observed
[52,71]. Furthermore, it was proposed that the inhibitory loop at the
cleavage site plays an important role in the regulation of the suggested
calcium leakage channel activity of PSs [72], a function of full-length
PSs which is independent of their proteolytic activity [28]. Finally, it
was also proposed that the loss of essential functions of PSs alone may
be a more potent cause of AD pathogenesis than the accumulation of
toxic A peptides [25,26]. Therefore, we aimed to express, purify, and
characterize full-length human PS2 zymogen to a sufficient quantity
and quality for structural studies.

Upon extensive screening of expression, detergent solubilization,
and purification, we overcame the aggregation problem of PS2, and
milligram quantities of homogeneous hisPS2 were obtained by a com-
bination of Ni-NTA and SEC. The removal of the periplasmic fraction
helped to reduce protein degradation during purification. The ratio of
the solubilization buffer to cell pellet amount was found to be crucial
for the purity and homogeneity of the purified hisPS2. Less than 5 ml/g
cell caused an increase in impurities and poor separation of the two
major peaks on SEC. This is likely due to an insufficient number of
micelles which caused the co-solubilization of aggregated material. A
higher ratio (33 ml/g) only increased the separation slightly, but did
not change the ratio of the two peaks significantly (data not shown).
These results indicated that hisPS2 existed in FC14 micelles in different
oligomerization states. However, it was reported that PS oligomeriza-
tion is not required for y-secretase activity [48], although the role of
oligomerization for the proposed calcium leakage channel function is
unclear. In the absence of other y-secretase proteins, hisPS2 formed a
trimer.

Biophysical characterization revealed that the purified hisPS2 was
well-folded. Far-UV CD detected the spectrum for a typical helical
protein. Deconvolution indicated that the purified hisPS2 contained the
expected amount of the secondary structure (Table 1). Near-UV CD
proved that the secondary structure of the purified hisPS2 was folded
into a well-defined tertiary structure.

Protein tryptophan fluorescence had emission peaks ranging from
300 nm to 350 nm depending on the polarity of the local environment.
The peak maximum at ~ 333 nm for purified hisPS2 revealed the buried
hydrophobic microenvironment of tryptophan side chains [73]. In
comparison with PS1, seven of the eight tryptophan residues of PS2 are
conserved. They are either located within the transmembrane region (2
in the center, 4 at the ends of TMs) or located within the extra-mem-
brane segment in the big loop between TM6 and TM7 (Fig. S1). The
microenvironment of the majority of tryptophan residues were able to
explain the observed emission maxima of the tryptophan fluorescence
spectra. Protein tyrosine fluorescence is typically undetectable, mainly
due to tryptophan residues having much higher absorption coefficients
and quantum yields and also due to Forster energy transfer from tyr-
osine to nearby tryptophan [74]. The distances between tyrosine and
nearby tryptophan in the cryo-EM structure of PS1 varied from 5 A to
23 A, indicating different energy transfer efficiencies [52]. PS2 contains
22 tyrosine residues, 16 of which are conserved (Fig. S1). For PS2, it is
also likely that different energy transfer efficiencies exist between tyr-
osine and tryptophan. This explains the observation that when exited at
275 nm, hisPS2 exhibited an emission maximum at ~ 326 nm instead of
~333nm. The maximum of the fluorescence spectrum shifted to a
lower wavelength because the tryptophan fluorescence was overlaid by
unquenched tyrosine fluorescence [75]. The intrinsic protein fluores-
cence spectroscopy thus revealed the expected micro-environment of
tryptophan side chains, which is another indicator of proper folding.

It was recently proposed that AD mutations cause AD pathology by
impairing the overall protein stability of PS1 [76]. We therefore in-
vestigated the thermal stability of the secondary and tertiary structure
of hisPS2. The thermal unfolding of hisPS2 in FC14 was an irreversible
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process, in which part of the helical structure transformed into beta-
strand. Cross-beta aggregation prediction by Tango [77]. reveals three
regions in PS2 which are aggregation-prone: T142-160Y in TM2, W171-
188L in TM3, and F392-409F in TM8 (Fig. S1). Among these three re-
gions, TM2 has the highest aggregation probability, which is in agree-
ment with the observed structural flexibility of PS1 [52,71]. These re-
gions account for 12.2% of the total sequence, which explained the
transition from helical to beta-strand structure detected by CD. Such a
transition likely causes the formation of the observed heat-stable ag-
gregates by intermolecular beta-strand interaction during thermal un-
folding [78]. This is in agreement with the irreversibility of structural
transformations of hisPS2 as observed from the temperature reverse
scan, the deconvoluted structure composition at different temperatures,
and the detection of SDS-resistant aggregates. The presence of 22%
helix at 98 °C was probably due to the extreme stability of the de-
tergent-bound helix, which prevented it from unfolding — a phenom-
enon also observed for other membrane proteins [79,80]. Cholesterol
significantly increased the thermal stability of hisPS2, which provides
evidence that cholesterol acts as a natural ligand. It was observed that
aberrant intracellular cholesterol transport alters PS localization and
enhances AP production [81,82]. Therefore, cholesterol might regulate
AP processing by altering the structural stability of PSs. The relatively
low T, value (34.2 °C) of the tertiary structure was in agreement with
the reported loose packing of PS1 TMs in the cryo-EM structure [52]
and the presence of the interconverting conformations of y-secretase
[83]. Such a T,, value also explained the difficulties (aggregation and
impurities) encountered during purification.

For maturation, PSs undergo auto-cleavage within the hydrophobic
sequence (E280 to E300 for PS1, E286 to K306 for PS2, Fig. S1) located
in the large loop between TM6 and TM7. It was proposed that cleavage
removes the inhibitory exon 9 loop which occupies the substrate
binding site, thus resulting in an active enzyme [84]. The hydrophobic
segment is not only involved in modulating enzyme activation, sub-
strate binding, and processing [84,85], but might also be involved in
controlling the potential calcium channel leakage function [72]. Ex-
perimental evidence has shown that the PS1-AE9 mutant not only ex-
hibited proteolytic activity [86], but also functioned as a calcium
leakage channel [28]. The corresponding sequence from the cryo-EM
structure of PS1 exhibited a short beta-strand for residues 285-288,
while the densities were missing for the rest of the residues [71]. It was
proposed that the release of the inhibitory loop (5290 to S319 in PS1)
by auto-cleavage after maturation controls both the proteolytic activity
and the calcium leakage channel function. The e-nitrogen of PS1-W294
is in close contact with the nearest 8-oxygen of the catalytic residue
PS1-D385 (5 A) in the immature PSs. This distance increases to > 10 A
in the mature PSs due to the movement of the inhibitory loop out of the
proteolytic active site [54]. It is therefore reasonable to assume that
after the release of the inhibitory loop, W294 becomes more exposed.
However, experimental results showed that the Ca®>* channel leakage
function of PSs was independent of their proteolytic activity, although
residue D385 was indispensable. PS1-D275A abolished proteolytic ac-
tivity (resulting in uncleaved PSs) but did not influence the Ca®*
leakage function while the PS1-D385A mutation lacked both the pro-
teolytic activity and the Ca®* leakage function [69,70,87,88]. In this
study, it was observed that hisPS2-WT zymogen underwent conforma-
tional changes in the presence of calcium, which suggested that ma-
turation might not be required for the calcium channel function.
However, hisPS2-D263A/D366A, which abolishes both the proteolytic
activity and the calcium channel function, adopted a different con-
firmation and exhibited minor structural changes in the presence of
calcium. These results are in agreement with the previous experimental
observations [28]. W300 in PS2 (Fig. S1), which is located within the
inhibiting sequence, might be (partially) responsible for the observed
11% quenching. For hisPS2-D263A/D366A, the quenching decreased to
only 4.2%, probably because it adopted a different conformation. In-
deed, the quantum yield of hisPS2-D263A/D366A was similar to the
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hisPS2-WT in the presence of calcium, thus indicating that W300 might
already be more exposed in hisPS2-D263A/D366A than in PS2-WT. The
structural changes detected in the presence of calcium for hisPS2-WT
probably reflected to some extent the movement of the inhibitory loop,
which might open the calcium channel of the PSs. However, knowledge
of the actual molecular mechanism of the maturation and calcium
channel leakage function of PSs requires the atomic structure of the
uncleaved zymogen of PSs.
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